2-1 - Dérivation des fonctions $\mathbb{R} \to \mathbb{R}$

Thm de prolongement des fonctions C^1

Si f est continue sur [a, b] et de classe C^1 sur [a, b], alors

$$(f' \text{ a une limite } l \in \mathbb{K} \text{ en } a^+) \Rightarrow (f \in \mathcal{C}^1[a, b])$$
 (et $l = f'(a)$)

$$f(t) \qquad \qquad D^n f(t) \\ t^{\alpha}, \ \alpha \in \mathbb{C} \qquad \qquad \alpha(\alpha - 1)...(\alpha - n + 1)t^{\alpha - n} \text{ ou } \frac{\alpha!}{(\alpha - n)!} t^{\alpha - n} \text{ si } \alpha \in \mathbb{N} \text{ et } \alpha \geq n \\ e^{\alpha}t, \ \alpha \in \mathbb{C} \qquad \qquad \alpha^n e^{\alpha t} \\ \cos(\alpha t), \ \alpha \in \mathbb{R} \qquad \qquad \alpha^n \cos(\alpha t + n \frac{\pi}{2}) \\ \sin(\alpha t), \ \alpha \in \mathbb{R} \qquad \qquad \alpha^n \sin(\alpha t + n \frac{\pi}{2})$$

2-2 - Intégrale d'une fonction $[a,b] \to \mathbb{R}$

Sommes de Riemann

Thm : Si $f \in \mathcal{C}([a,b],\mathbb{C})$, alors la suite de terme général $u_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right)$ est convergente de limite $\int_{-\infty}^{b} f$.

2-3 - Primitives d'une fonction continue $I \to \mathbb{R}$

Thm fondamental de l'intégration

Si f est continue de I dans \mathbb{K} et $a \in I$ alors $F = (x \mapsto \int_a^x f)$ est de classe \mathcal{C}^1 sur I et F' = f.

f(t)	$\mid F(t)$
$t^{\alpha}, \ \alpha \in \mathbb{C}$	si $\alpha \neq -1$, alors $\frac{t^{\alpha+1}}{\alpha+1}$, sinon $\ln t $
$e^{\alpha t}, \ \alpha \in \mathbb{C} \setminus \{0\}$	$\frac{1}{-}e^{\alpha t}$
$\ln(t)$	$\int_{0}^{\alpha} t \ln t - t$
$\cos t$	$\sin t$
$\sin t$	$-\cos t$
$\tan t$	$-\ln \cos t $
$\mathrm{cotan}t$	$ \ln \sin t $
$ \frac{1}{\cos^2 t} = 1 + \tan^2 t $ $ \frac{1}{\sin^2 t} = 1 + \cot^2 t $ $ \frac{1}{\sin^2 t} = 1 + \cot^2 t $	$\tan t$
$\frac{1}{\sin^2 t} = 1 + \cot^2 t$	$-\cot nt$
$\frac{1}{\sin t}$	$\ln \left \tan \frac{t}{2} \right $
1	$\begin{vmatrix} \frac{1}{a} \arctan \frac{t}{a} \\ \frac{1}{2} \ln \left \frac{1+t}{1-t} \right \end{vmatrix}$
$\frac{\overline{t^2 + a^2}}{1}$	$\begin{bmatrix} a & a \\ 1 & 1+t \end{bmatrix}$
$\begin{array}{c} \frac{1}{1-t^2} \\ 1 \end{array}$	$\left \frac{1}{2} \ln \left \frac{1+t}{1-t} \right \right $
$rac{1}{\sqrt{1-t^2}}$	$\arcsin t$ ou $-\arccos t$
$\frac{1}{\sqrt{1+t^2}}$	$\operatorname{argsh} t \text{ ou } \ln(t + \sqrt{1 + t^2})$
$\frac{1}{\sqrt{1+t^2}}$ $\frac{1}{\sqrt{t^2-1}} \text{ si } t > 1$	$\operatorname{argch} t \text{ ou } \ln(t + \sqrt{t^2 - 1})$

Développement limité:

1. Définition:

"f admet un DL_n en 0" $\stackrel{\mathrm{def}}{=}$ "Il existe un polynôme $P \in \mathbb{R}_n[X]$ tel que $f(x) = P(x) + o_{x \to 0}(x^n)$ " Si f admet un DL_n en 0, alors **il est unique**.

Pour que f admette un DL_n en 0, il suffit que f soit de classe C^{n-1} sur un voisinage de 0 et admette une dérivée d'ordre n en 0. Dans ce cas, le DL_n est donné par la formule de Taylor-Young.

Tout problème de DL peut (et doit, en général,) se ramener à un problème en 0 par changement de variable.

2. Formules:
$$\exp(t) = \sum_{k=0}^{n} \frac{t^k}{k!} + o(t^n)$$
 $(1+t)^{\alpha} = 1 + \sum_{k=1}^{n} \frac{\alpha(\alpha-1)...(\alpha-k+1)t^k}{k!} + o(t^n)$ $\cos(t) = \sum_{k=0}^{n} \frac{(-1)^k t^{2k}}{(2k)!} + o(t^{2n+1})$ $(1-t)^{-1} = \sum_{k=0}^{n} t^k + o(t^n)$ $\sin(t) = \sum_{k=0}^{n-1} \frac{(-1)^k t^{2k+1}}{(2k+1)!} + o(t^{2n})$ $\ln(1-t) = -\sum_{k=1}^{n} \frac{t^k}{k} + o(t^n)$

3. Opérations :

Combinaison linéaire, produit.

Pour faire un quotient (par 1 + f(x) tel que $\lim_{0} f = 0$), on multiplie (par $(1 + f(x))^{-1}$).

Primitive (sans oublier la constante d'intégration), dérivée si on est sûr de l'existence de son DL.

DL d'une fonction composée de l'intérieur vers l'extérieur :

Par exemple, soit $f(x) = \exp(\sin(\ln(1+x)))$:

$$\ln(1+x) = \dots \rightarrow_{x \rightarrow 0} 0, \text{ donc } \sin(\ln(1+x)) = \dots \rightarrow_{x \rightarrow 0} 0, \text{ donc } f(x) = \dots$$

On ne peut combiner que deux DL du même ordre (n) et on obtient un DL_n .

Mais attention, l'ordre peut changer par :

- mise en facteur :

Avec sh x à l'ordre n, on a $x \text{ sh } x = x \left(x + x^3/6 + ... + o(x^n) \right) = x^2 + ... + o(x^{n+1})$ ie un DL_{n+1} .

- simplification :

Avec sh
$$x$$
 à l'ordre n , on a $\frac{x}{\sinh x} = \frac{x}{x + x^3/6 + \dots + o(x^n)} = \frac{1}{1 + x^2/6 + \dots + o(x^{n-1})} = \dots + o(x^{n-1})$ ie un DL_{n-1} .

- primitive (ordre $n \to n+1$); dérivée (ordre $n \to n-1$)
- 4. Utilisation: On cherche un équivalent et on n'y parvient pas directement (somme, ...)

2-4 - Approximation

Suite définie par récurrence du type : $u_{n+1} = f(u_n)$

- 1. **Théorème du point fixe :** Si f est contractante d'un segment de \mathbb{R} dans lui-même, alors f admet un point fixe unique et toute suite u_0 , $u_{n+1} = f(u_n)$ converge vers ce point fixe.
- 2. Etude d'une telle suite dans un cas particulier :
 - Représentation graphique et recherche de la limite **éventuelle** (C'est un point fixe de f si f est continue)
 - Déterminer un intervalle I stable par f contenant l'ensemble des termes de (u_n) sur lequel f est monotone.
 - Sens de variation :

Si f est croissante, (u_n) est monotone et le sens de variation dépend du signe de la fonction $g: t \mapsto f(t) - t$. Si f est décroissante, (u_{2n}) et (u_{2n+1}) sont monotones de sens contraires et leurs sens de variation dépendent du signe de la fonction $h: t \mapsto f \circ f(t) - t$. Leurs limites éventuelles sont des points fixes de $f \circ f$.