- 1. Soit $f \in \mathcal{C}^0(\mathbb{R},\mathbb{R})$ et $g(x,y) = \int_0^y (x-t)f(t) dt$. Prouver que g est de classe \mathcal{C}^1 sur \mathbb{R}^2 et déterminer sa différentielle. e1-2
- 2. Montrer que l'application définie par $f(X)=X^2$ sur $\mathcal{M}_{n,n}(\mathbb{R})$ est de classe \mathcal{C}^{∞} et déterminer sa différentielle.
- e1-45

3. Déterminer les extrema de $f:(x,y)\mapsto \frac{xy}{(1+x)(1+y)(x+y)}$ sur $(\mathbb{R}_+^*)^2$.

- e2-036
- 4. Soit $(a,b) \in \mathbb{R}^2$ et $f_{a,b}: (x,y) \in \mathbb{R}^2 \mapsto (x+a\sin y, y+b\sin x) \in \mathbb{R}^2$. Montrer que $f_{a,b}$ est surjective. Trouver une condition nécessaire et suffisante sur (a,b) pour que $f_{a,b}$ soit un \mathcal{C}^1 -difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .
- E1-51

- 5. Soit f une fonction de \mathbb{R}^2 dans \mathbb{R} telle que : $\begin{cases} \forall t \in \mathbb{R}^+ & (x,y) \in D_f \Rightarrow (tx,ty) \in D_f \\ \forall t \in \mathbb{R}^+ & f(tx,ty) = t^k f(x,y) \end{cases}$ f est dite k-positivement homogène.
 - (a) Démontrer que, si f est k-positivement homogène et de classe \mathcal{C}^1 , alors :

$$\forall (x,y) \in D_f^2 \quad xD_1f(x,y) + yD_2f(x,y) = kf(x,y)$$

Etudier la réciproque.

- (b) Démontrer que, si f est de classe \mathcal{C}^1 , alors : D_1f et D_2f sont (k-1) positivement homogènes. Etudier la réciproque.
- e2-060b

6. f est une fonction continue de \mathbb{R} dans \mathbb{R} . On définit une fonction G_n de \mathbb{R}^2 dans \mathbb{R} par :

$$G_n(x,y) = \int_0^y f(u) \frac{(x-u)^n}{n!} du$$

Démontrer que G_n est de classe \mathcal{C}^1 et calculer sa différentielle.

E1-9

e1-41

E1-20

7. On approche la solution de $(Dy = f(t, y), y(t_0) = y_0)$ pour $h \in \mathbb{R}^*$ fixé par la suite

$$\forall n \geq 0 \quad t_{n+1} = t_n + h \; , \; y_{n+1} = y_n + h f(t_n + h/2, y_n + \frac{h}{2} f(t_n, y_n)).$$

On suppose que $f \in \mathcal{C}^2(\mathbb{R}^2)$. Déterminer un DL_3 quand $h \to 0$ de $y(t_1) - y_1$.

On suppose que $h = \frac{1}{p}$ et $p \in \mathbb{N}^*$. Déterminer un majorant de $y(t_p) - y_p$.

- 8. Soit $g \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{R})$ une fonction harmonique et $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que $\forall t \in \mathbb{R}, \quad D^2 f(t) \neq 0$. A quelle condition $f \circ g$ est-elle harmonique? E1-18
- 9. Soit g une fonction de classe \mathcal{C}^1 de \mathbb{R}^2 dans \mathbb{R} et $\psi(x,y) = \frac{g(y,x) g(x,y)}{y-x}$ si $x \neq y$.

Démontrer que ψ est prolongeable en une fonction continue sur \mathbb{R}^2

En déduire la valeur de
$$\zeta(a) = \lim_{(x,y)\to(a,a)} \frac{x^y - y^x}{e^{x/y} - e^{y/x}}$$
. E1-48

- 10. Soit $f(x,y) = \frac{x \sin y y \sin x}{x^2 + y^2}$ si $(x,y) \neq [0,0)$. f admet-elle un prolongement continu sur \mathbb{R}^2 ? Ce prolongement est-il de classe \mathcal{C}^1 ? E1-14
- 11. Soit f la fonction de $(]0, +\infty[)^2$ dans \mathbb{R}^2 définie par : $f(x,y) = \left(\frac{x^2}{2y}, \frac{y^2}{2x}\right)$.

Etudier l'existence d'une fonction réciproque f^{-1} et calculer ses dérivées partielles d'ordre 1 et 2 après avoir démontré leur existence.

- 12. Déterminer un ouvert U de \mathbb{R}^2 tel que $\varphi:(x,y)\mapsto (x-y,xy)$ soit un \mathcal{C}^1 -difféomorphisme de U sur $\varphi(U)$. E1-50
- 13. Soit le carré de \mathbb{R}^2 donné par $[0,1]^2$ de diagonale Δ et $f(x,y) = \begin{cases} x(1-y) & \text{si } x \leq y \\ y(1-x) & \text{si } x \geq y \end{cases}$. Montrer que f admet un maximum sur le carré en un seul point à préciser. Mines e2-007
- 14. Déterminer les triangles d'aire maximale inscrits dans un cercle donné. e2-032
- 15. Quel est le pavé de volume maximal dont la somme des longueurs des arêtes est L? dont la somme des aires des faces est A? e2-057
- 16. M et M' décrivent respectivement deux cercles tangents extérieurement en O. Quelle est l'aire maximale du triangle (O, M, M')? Centrale E2-67