- 1. Résoudre : (a) $D^2y + 4y = \cos^2 x$ et : (b) $D^2y + 4y = \frac{1}{\cos^2 x}$ E4-124
- 2. f est solution du problème de Cauchy $(y" + (\cos t)y = e^{t^2}; y(0) = 1; y'(0) = 0)$. Prouver que f est paire.
- 3. Résoudre $D^2y \tan tDy + 2y = 0 \text{ sur } [0, \pi/2]$
 - en remarquant que $(y_0: t \mapsto \sin t)$ est une solution particulière,
 - en utilisant le Wronskien de (y, y_0) .

e4-102

 $\left(egin{array}{c} \dfrac{dx}{dy} \ \dfrac{dy}{dy} \end{array}
ight) = A_{lpha,eta} \left(egin{array}{c} x \ y \end{array}
ight)$ 4. Soit $(\alpha, \beta) \in \mathbb{R}^2$ et $A_{\alpha, \beta} = \begin{pmatrix} \alpha & \beta \\ 1 & 2 \end{pmatrix}$. On considère l'équation différentielle : (E)

Déterminer la solution générale de (E) quand (α, β) prend les valeurs suivantes :

$$(1,6);(3,2);(4,-1);(2,-1)$$

Dans chaque cas, représenter la trajectoire correspondant à la condition initiale $(x(t_0), y(t_0)) = (x_0, y_0)$ E4-122

- 5. Résoudre $x^2D^2y+3xDy+y=1+x^2$ sur $I_1=\mathbb{R}_+^*$ puis sur $I_2=\mathbb{R}_+^*$ en utilisant les changements de variable $t \mapsto x = \pm \exp(t)$. e4-027
- 6. Soit (E) $Dy = e^y x$. Résoudre (E) en utilisant la fonction $z = e^{-y}$. Représenter la solution vérifiant y(0) = 1. e3-84
- 7. Résoudre $x = Dy + \sin(Dy)$; on utilisera le paramétrage t = Dy. E3-65
- 8. Soit y (resp z) une solution de $D^2y(t) + \phi_1(t)y(t) = 0$ (resp $D^2z(t) + \phi_2(t)z(t) = 0$) où ϕ_1 (resp ϕ_2) est une fonction réelle continue sur $[a, +\infty[$. On suppose que $\forall t \geq a \quad \phi_1(t) \geq \phi_2(t)$. Prouver qu'entre deux zéros de z, il existe un zéro de y. Application : J_0 est solution de (xy'' + y' + xy = 0; y(0) = 1; y'(0) = 0); étudier ses zéros. E4-149
- 9. Soit y une solution de $D^2y(t)+\phi(t)y(t)=0$ où ϕ est une fonction réelle continue sur I telle que y s'annule en un point a de I mais y n'est pas la fonction nulle. Prouver que : $\exists \alpha > 0 \quad \forall t \in [a - \alpha, a + \alpha] \setminus \{a\} \quad y(t) \neq 0$. (ie les zéros de y sont "isolés") E4-150
- 10. Soit le système différentiel $\left(\frac{dx}{dt} = 2(x ty), \frac{dy}{dt} = 2y\right)$.

On utilise la méthode d'Euler avec un pas h de $t = t_0 = 0$ à $t = t_n = nh$ pour trouver la courbe intégrale

- qui passe par le point (x_0, y_0) à l'instant t = 0. Calculer explicitement (x_n, y_n) en fonction de x_0, y_0, n, h et vérifier la convergence de la solution approchée vers la solution exacte quand $n \to +\infty$. e3-85
- 11. Soit I un intervalle de \mathbb{R} , a une fonction continue sur I et b une fonction de classe \mathcal{C}^1 et ne s'annulant pas sur I. Trouver une condition nécessaire sur a et b pour que (E): y'' + ay' + by = 0 admette des solutions inverses l'une de l'autre. Cette condition est-elle suffisante?

Application numérique : résoudre 4xy'' + 2y' - y = 0. Existe-t-il des solutions \mathcal{C}^{∞} ?

Existe-t-il des solutions de (E) développables en série entière? Centrale

e4-001

- 12. Résoudre le problème de Cauchy : $\begin{cases} y"+|y|=0\\ y(0)=a \end{cases}$ On distinguera a<0,a>0 et a=0. Centrale y'(0)=0e4-005
- 13. Soit $(E)(1-t^2)y''-ty'-a^2y=0$. Résoudre (E) en remarquant que $t\mapsto \exp(a\arctan t)$ est une solution. E4-11
- 14. Soit (E) $(t+1)y"-2y'-(t-1)y=te^{-t}$. Résoudre en vérifiant que $t\mapsto e^t$ est une solution de l'équation sans second membre. E4-36
- 15. Déterminer les fonctions f continues sur $\mathbb R$ telles que :

$$\forall x \in \mathbb{R} \quad \frac{x}{3}(f(x) + 2f(0)) = \int_0^x f(t) dt$$

E4-19

16. Résoudre (a) $D^2y - 2Dy - 3y = \frac{\exp(3x)}{\cosh^2 x}$ (b) $D^2y + 3Dy + 2y = \frac{x-1}{2\pi^2}e^{-x}$. e4-144 17. Résoudre l'équation différentielle y" + y' + $y = \varphi$ où φ est une fonction continue sur $\mathbb R$ donnée. Soit $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$ telle que $\lim_{x \to +\infty} (f''(x) + f'(x) + f(x)) = 0$. Montrer que : $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} f''(x) = 0$.

e4-134

18. Soit (E) $D^2y + e^{-t^2}y = \sin t$ et f une solution réelle sur $I = [0, +\infty[$ de (E). Démontrer que, si f est bornée sur I et de carré intégrable sur I, alors $\lim_{t\to +\infty} f(t) = 0$.

On pourra étudier l'intégrabilité sur I de $D^2f - \sin$. e4-132

- 19. Soit (E) $D^2y + e^xy = 0$; prouver que toutes les solutions sont bornées sur \mathbb{R}_+ . Généralisation à une équation $D^2y + f(x)y = 0$? e4-151
- 20. Résoudre le système différentiel : $\begin{cases} x"=x-\frac{15}{4}y'+e^{2t}\\ y"=-y-x' \end{cases}.$ On pourra éventuellement se ramener à un système de premier ordre. Centrale

e4-003

- 21. Résoudre $x = \left(\frac{Dy 1}{Dy + 1}\right)^2$ en paramétrant avec t = Dy. E3-73
- 22. Soit $(E): y' = \frac{x+y+a}{x-y+b}$. Déterminer une transformation du type $(x,y)\mapsto (X=x+\beta,Y=y+\alpha)$ telle que (E) soit équivalente à $Y' = \frac{X+Y}{X-Y}$. Résoudre (E). e3-032