1. Soit une suite (P_n) de fonctions polynômes à coefficients réels qui approche uniformément sur \mathbb{R} une fonction f. Montrer que f est une fonction polynôme.

C9-047

- 2. En utilisant une suite de terme général f_n , affine par morceaux, continue sur [0,1] telle que $f_n(t) = 0$ si $1/n \le t \le 1$, prouver que $\|.\|_2$ et $\|.\|_{\infty}$ ne sont pas équivalentes sur $\mathcal{C}([0,1],\mathbb{R})$.
- 3. Soit f une application de classe C^2 de \mathbb{R}_+ dans \mathbb{R} telle que f(0) = 0 et que f et f" soient de carré intégrable sur \mathbb{R}_+ .

Montrer que f' est de carré intégrable sur \mathbb{R}_+ et que $\left(\int_0^{+\infty} f'^2\right)^2 \le \int_0^{+\infty} f^2 \int_0^{+\infty} f''^2$ c3-072

- 4. Dans $E = \mathcal{C}([0,1],\mathbb{C})$ muni du produit scalaire $\langle f,g \rangle = \int_0^1 \overline{f}g$, prouver que l'orthogonal du sous-espace des fonctions polynômiales est le sous-espace nul.
- 5. Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ et $r_{\alpha} : \mathbb{C} \to \mathbb{C}$. Soit φ une application continue de \mathbb{C} dans \mathbb{C} . $z \mapsto e^{2i\pi\alpha}z$

Montrer que
$$\lim_{n \to +\infty} \left(\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ r_{\alpha}^{k}(z) \right) = \int_{0}^{1} \varphi\left(e^{i2\pi t}z\right) dt$$
.

6. Lemme de Lebesgue :

Soit $f \in Cm([0,1],\mathbb{C})$ et a une suite réelle telle que $\lim a_n = +\infty$. Prouver que $\lim_{n \to +\infty} \int_0^1 f(t) \sin(a_n t) dt = 0$.

7. Montrer que $\Phi: \mathbb{R}[X] \to \mathbb{R}$ est une norme, et qu'elle n'est pas équivalente à $N(P) = \sup_{t \in [0,1]} |P(t)|$. $P \mapsto \sum_{k=0}^{+\infty} |P^{(k)}(k)|$

Montrer que $\psi: P \mapsto |P(0)| + N(P')$ est une norme sur $\mathbb{R}[X]$. Soit $P \in \mathbb{R}_n[X]$; montrer que $\forall n \in \mathbb{N}, \ \exists A_n \in \mathbb{R}, \ N(P') \leq A_n \Phi(P)$. CCP

- 8. Soit f une application de classe C^1 de \mathbb{R}_+ dans \mathbb{C} telle que f soit intégrable sur \mathbb{R}_+ et f' de carré intégrable sur \mathbb{R}_+ . Montrer que $\exists K \in \mathbb{R} \quad \forall (x,y) \in \mathbb{R}_+^2 \quad |f(x) - f(y)| \leq K|x - y|^{1/2}$ puis que $\lim f = 0$ et que f est bornée sur \mathbb{R}_+ . c3-074
- 9. f décrit l'ensemble des fonctions continues strictement positives sur le segment $[a \ b]$ (a < b).

Déterminer le minimum du produit $P_f = \left(\int_a^b f(x) dx\right) \left(\int_a^b \frac{1}{f(x)} dx\right)$; pour quelles fonctions f ce minimum est-il atteint?

Montrer que P_f n'est pas majoré. C6-048

- 10. (a) Soit (f_n) une suite de fonctions continues de \mathbb{R} dans \mathbb{R} , convergente pour $\|.\|_{\infty}^{\mathbb{R}}$ vers une fonction f. On note $g_n = f_n \circ f_n$ et $g = f \circ f$. Démontrer que la suite (g_n) converge simplement sur \mathbb{R} vers g.
 - (b) Soit $f_n(x) = x^2 + 1/n^2$. Démontrer que (f_n) vérifie les hypothèses de la question (a) et déterminer les fonctions f, g_n, g . La suite (g_n) est-elle convergente vers g pour $\|.\|_{\infty}^{\mathbb{R}}$?