- 1. Soit $A=\begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$; donner les valeurs propres de l'endomorphisme u_A défini sur $\mathscr{M}_2(\mathbb{R})$ par $u_A(M) = AM$. Est-il diagonalisable? CCP
 - a0-023

a0-019

- 2. Soit $A=\begin{pmatrix}1&0&1\\0&3&-2\\0&2&-1\end{pmatrix}$. Montrer que A est semblable à $B=\begin{pmatrix}1&0&1\\0&1&1\\0&0&1\end{pmatrix}$. Calculer A^n pour
- 3. Soit u, v deux endomorphismes de E, \mathbb{C} -espace vectoriel de dimension finie tels que u et vcommutent. Prouver qu'il existe un vecteur propre commun à u et v.
- 4. Soit $n \in \mathbb{N}^*$ et $A \in \mathscr{M}_n(\mathbb{R})$ telle que $\operatorname{tr}(A) \neq 0$. On définit

$$f: \ \mathscr{M}_n(\mathbb{R}) \ o \ \mathscr{M}_n(\mathbb{R}) \ M \ \mapsto \ (\mathrm{tr} A) M - (\mathrm{tr} M) A$$

Montrer que f est un endomorphisme diagonalisable de $\mathcal{M}_n(\mathbb{R})$. Déterminer les éléments propres de f.

a0-097

- 5. Soit $A \in GL_6(\mathbb{R})$ tel que $A^3 3A^2 + 2A = O_6$ et tr(A) = 8. Déterminer χ_A .
- 6. Soit A une matrice de rang 1. Déterminer son polynôme caractéristique et ses éléments propres.
- 7. Prouver que toute matrice de $\mathcal{M}_n(\mathbb{C})$ est limite d'une suite de matrices diagonalisables. (L'ensemble des matrices diagonalisables est dense dans $\mathcal{M}_n(\mathbb{C})$
- 8. Soit $M \in GL_n(\mathbf{C})$ telle que M^2 soit diagonalisable. Démontrer que M est diagonalisable. a0-106
- 9. Soit u, v, f trois endomorphismes de E, \mathbb{K} -espace vectoriel de dimension finie tels qu'il existe $(\lambda, \mu) \in K^2$ $f^2 = \lambda^2 u + \mu^2 v$, $f^3 = \lambda^3 u + \mu^3 v$. Montrer que f est diagonalisable et que tel que : $f = \lambda u + \mu v$, $\forall n \in \mathbb{N}, \ f^n = \lambda^n u + \mu^n v.$ a0-107
- 10. (a) Soit A, B deux matrices carrées d'ordre n. Calculer $\begin{pmatrix} xI_n & A \\ B & I_n \end{pmatrix} \times \begin{pmatrix} -I_n & 0_n \\ B & I_n \end{pmatrix}$. Démontrer que, pour toutes matrices carrées A et B, AB et BA ont même polynôme caractéristique.
 - (b) Dans cette question, on suppose seulement que $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. Comparer les polynômes caractéristiques de AB et BA. On pourra utiliser une factorisation de A de la forme $A = UJ_rV$ où U et V sont inversibles et $J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$ a0-102
- 11. Soit $A \in \mathcal{M}_{n,n}(\mathbb{C})$.
 - (a) Démontrer que A est nilpotente si et seulement si $\chi_A(X) = (-X)^n$.
 - (b) Exprimer le développement limité d'ordre n+1 en $+\infty$ de $F(t)=\frac{\chi_A'(t)}{\chi_A(t)}$ au moyen des nombres $tr(A^k)$.
 - (c) Démontrer que A est nilpotente si et seulement si $\forall k \in [1, n]$, $tr(A^k) = 0$. Centrale

A0-144

12. Soit
$$(a, b, c) \in \mathbb{C}^3$$
, et $M = \begin{pmatrix} 1 & a & 2b - ac \\ 0 & 0 & c \\ 0 & 0 & -1 \end{pmatrix}$. Diagonaliser M . CCP

13. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que : $A^3 = A + I_n$. Démontrer que det A > 0. A0-105

- 14. (a) Soit $A = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ -1 & 0 & -1 \end{pmatrix}$. Résoudre l'équation $X^2 = A$, puis $X^2 + X = A$. (b) Soit $A = \begin{pmatrix} -2 & 0 & 1 \\ -5 & 3 & 0 \\ -4 & 4 & -2 \end{pmatrix}$ et soit $X \in \mathcal{M}_n(\mathbb{R})$ vérifiant $X^2 3X = A$. Montrer que AX = XA.

Résoudre l'équation $X^2 - 3X = A.CCP$

- (c) Résoudre dans $\mathcal{M}_2(\mathbb{C})$ l'équation $X + X^2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Centrale A0-122
- 15. Soit u un endomorphisme de E, espace vectoriel de dimension finie et Φ l'endomorphisme de $\mathcal{L}(E)$ défini par $\Phi(v) = u \circ v$. Montrer que Φ est diagonalisable si et seulement si u l'est. Si u est diagonalisable, que dire de $\psi: v \mapsto u \circ v v \circ u$? Centrale a0-033
- 16. $A = \begin{pmatrix} -I_n & -I_n \\ I_n & I_n \end{pmatrix}$ est-elle diagonalisable?

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Déterminer le polynôme caractéristique de $B = \begin{pmatrix} O_{nn} & A \\ I_n & O_{nn} \end{pmatrix}$, en fonction de celui de A. CCP a0-032

- 17. Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel de dimension finie, vérifiant $u^3+u=0$. Montrer que u est de rang pair. CCP a0-029
- 18. (a) Soit $u \in \mathcal{L}(\mathbb{K}^n)$ canoniquement associé à $A \in \mathcal{M}_n(\mathbb{K})$ et H un hyperplan de \mathbb{K}^n d'équation $\sum_{i=1}^{n} \alpha_i x_i = 0$ dans la base canonique.

Montrer que H est stable par u si et seulement si $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$ est un vecteur propre de tA .

- (b) Trouver les sous-espaces de \mathbb{R}^3 stables par u canoniquement associé à la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$ A0-104
- 19. Existe-t-il $X \in \mathcal{M}_3(\mathbb{C})$ telle que $X^2 = A$ avec $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$? Généraliser. A10-132
- 20. Soit $A \in GL_n(\mathbb{K})$ et $X \in \mathcal{M}_{n,1}(\mathbb{K})$. Démontrer : $\operatorname{tr}(^t X A^{-1} X) = \frac{\det(A + X^t X)}{\det A} 1$.
- 21. Soit $A = \begin{pmatrix} 0 & n & & \\ 1 & \ddots & \ddots & (0) \\ (0) & & \ddots & 1 \\ & & n & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$. Déterminer ses valeurs propres et ses vecteurs propres. Centrale a0-145
- 22. Pour $(a_1,...,a_n) \in \mathbb{C}^n$ donné, on considère la matrice M telle que :

$$\forall i \in [1, n] \quad m_{ni} = m_{in} = a_i; \quad (i \neq n \text{ et } j \neq n) \Rightarrow m_{ij} = 0.$$

Soit $\Delta_n(a_1,...,a_n) = \chi_M(X)$.

- (a) Calculer $\Delta_n(a_1,...,a_n)$. Etudier les valeurs propres de M et leur ordre.
- (b) Démontrer que $M = \begin{pmatrix} & & 1 \\ & (0) & & 2 \\ & & & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ est diagonalisable et la diagonaliser.
- (c) Démontrer qu'il existe (λ_1, λ_2) tel que $M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 2i\sqrt{2} \end{pmatrix}$ soit semblable à $T = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_2 \end{pmatrix}$ et déterminer une matrice de passage P telle que $\forall j \quad p_{1j} = 1$.