- 1. Soit A triangulaire par blocs. A quelle condition est-elle inversible? Prouver que, si elle existe, A^{-1} est triangulaire par blocs.
- 2. Soit $u \in \mathcal{L}(E)$ ayant même matrice dans toutes les bases. Prouver que u est une homothétie.

a7-083

- 3. Prouver qu'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{C})$ est de rang 1 si et seulement si il existe $(B,C) \in \mathcal{M}_{n,1}(\mathbb{C}) \times \mathcal{M}_{1,p}(\mathbb{C})$ tel que A = BC, $B \neq 0_{\mathcal{M}_{n,1}(\mathbb{C})}$, $C \neq 0_{\mathcal{M}_{1,p}(\mathbb{C})}$. Soit $A \in \mathcal{M}_{n,n}(\mathbb{C})$ de rang 1. Prouver que $A^2 = (\operatorname{tr} A)A$ et calculer A^p puis $(I_n + A)^p$ pour $p \in \mathbb{N}$.
- 4. Soit $D = \begin{pmatrix} a_1 & (0) \\ & \ddots & \\ & (0) & a_n \end{pmatrix}$ avec $a_1,..,a_n$ distincts dans \mathbb{K} . Prouver que A commute avec D si et seulement si $A \in \mathbb{K}[D]$
- 5. Soit $A \in \mathcal{M}_{n,n}(\mathbb{C})$ fixée et soit Φ l'application de $\mathcal{M}_{n,n}(\mathbb{C})$ dans lui-même définie par $\Phi(X) = AX + XA$. Déterminer la trace de Φ en fonction de celle de A.
- 6. A et B étant donnés dans $\mathcal{M}_{n,n}(\mathbb{R})$, résoudre l'équation $X+\operatorname{tr}(X)A=B$ où l'inconnue X est dans $\mathcal{M}_{n,n}(\mathbb{R})$.
- 7. (a) Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice de trace nulle. Démontrer que A est semblable à une matrice de diagonale nulle. (On pourra raisonner par récurrence sur n).
 - (b) Soit $D \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice diagonale dont les éléments diagonaux sont distincts et $u : \mathcal{M}_{n,n}(\mathbb{R}) \to \mathcal{M}_{n,n}(\mathbb{R})$ défini par u(M) = DM MD. Etudier $\ker(u)$ et $\operatorname{Im}(u)$. En déduire que toute matrice de trace nulle est de la forme XY - YX, $(X,Y) \in \mathcal{M}_n^2$ (ie "est un commutateur").

Dans le cas n = 2, pour (a, b) donné, chercher (X, Y) avec Y diagonale tel que $\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} = XY - YX$; en déduire une méthode de calcul de (X, Y).

Exemple : Pour
$$A = \begin{pmatrix} -15 & 27 & -37 \\ 4 & -11 & 12 \\ 10 & -20 & 26 \end{pmatrix}$$
, déterminer (X, Y) .

Mines a7-050

- 8. Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ antisymétrique.
 - (a) On suppose $a_{12} \neq 0$, et on décompose A sous la forme : $A = \begin{pmatrix} J & U \\ -^t U & V \end{pmatrix}$ avec $J = \begin{pmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{pmatrix}$. Soit $P = \begin{pmatrix} I_2 & -J^{-1}U \\ 0 & I_{n-2} \end{pmatrix}$. Montrer que P existe et est inversible. Calculer AP. En déduire que $\operatorname{rg}(A) = 2 + \operatorname{rg}({}^t U J^{-1} U + V)$.
 - (b) Dans le cas général, montrer que rg(A) est pair.

a7-082

- 9. Soit E un \mathbb{K} -espace vectoriel de dimension $n, f \in \mathscr{L}(E)$ nilpotent d'ordre $p, a \in E$ tel que $f^{p-1}(a) \neq 0$ et $F = \operatorname{Vect}\left(f^{(k)}(a)\right)_{k \in \mathbb{N}}$.
 - (a) Prouver que $(f^{(k)}(a))_{k \in [0,p-1]}$ est une base de F.
 - (b) Soit $\varphi \in E^*$ tel que $\varphi(f^{(p-1)}(a)) \neq 0$; prouver que φ existe. Soit $H = \{x \in E / \forall k \in \mathbb{N} \mid \varphi \circ f^k(x) = 0\}$; démontrer que H est un supplémentaire de F stable par f.
 - (c) Décrire la matrice de f dans une base adaptée à $F \oplus H$. Prouver qu'il existe une base \mathcal{B} de E telle que la matrice A de f dans \mathcal{B} vérifie $a_{i,j} = 0$ si $j \neq i+1$ et $a_{i,i+1} \in \{0,1\}$.

A7-80

- 10. Soit $(X_i)_{1 \leq i \leq p}$, p matrices de $\mathcal{M}_{1n}(\mathbb{R})$ formant une famille libre, $(Y_j)_{1 \leq j \leq q}$, q matrices de $\mathcal{M}_{1n}(\mathbb{R})$ formant aussi une famille libre; montrer que la famille des $({}^tY_jX_i)$ est une famille libre. CCP
- 11. Montrer que $\mathcal{M}_{n,n}(\mathbb{K})$ admet une base formée de projecteurs.

a7-103

A7-076

A7-060

12. Soit A et B des matrices de $\mathcal{M}_n(\mathbb{R})$. Soit $Q \in \mathbb{R}[X]$ un polynôme non constant.

On suppose que A + B = AQ(B).

- (a) Montrer que, si $Q(B) I_n$ est inversible, alors A et B commutent.
- (b) Montrer que $\operatorname{rg}(AB BA) + \operatorname{rg}(Q(B) I_n) \le n$.

Mines a7-092

- 13. Soit P la matrice de passage de $(X^k)_{0 \le k \le n}$ vers $((X-1)^k)_{0 \le k \le n}$; calculer P et P^{-1} .
- 14. Soit $J = \begin{pmatrix} 0 & 0 & i \\ i & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$.
 - (a) Calculer les puissances successives de J.
 - (b) Soit A l'espace vectoriel engendré par les puissances successives de A. Prouver que A est un anneau. Déterminer ses éléments inversibles.
 - (c) On pose $K = I_3 J + J^2$. Soit A_1 l'ensemble des matrices L carrées d'ordre 3 sur $\mathbb C$ telles que KL = LK = L. Prouver que A_1 est un espace vectoriel. Quelle est sa dimension? Est-ce un anneau? Est-ce un corps?
- 15. Soit \mathcal{A} l'espace vectoriel des matrices réelles d'ordre n et A une matrice symétrique de \mathcal{A} . Prouver que tout élément M de \mathcal{A} peut s'écrire sous la forme M = X + AY, où X et Y sont des éléments de \mathcal{A} et où AX = 0. Cette décomposition est-elle unique?
- 16. Dans E, \mathbb{K} -espace vectoriel de dimension finie n, soit $f_1, f_2, ... f_n$ n endomorphismes nilpotents et deux à deux permutables.

permutables. Montrer que : $f_1 \circ f_2 \circ f_3 \circ ... \circ f_n = 0$.

- 17. Soit E un \mathbb{R} -espace vectoriel de dimension n, f un endomorphisme de E tel que $f^2 = -Id$.
 - 1. Montrer que, si $(x_1, ..., x_p, f(x_1), ..., f(x_{p-1}))$ est une famille libre, alors $(x_1, ..., x_p, f(x_1), ..., f(x_{p-1}), f(x_p))$ est aussi une famille libre de E.
 - 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = -I_n$. Montrer que A est semblable à $\begin{pmatrix} 0 & -I_p \\ I_p & 0 \end{pmatrix}$.
 - 3. Montrer qu'il existe un endomorphisme de E tel que $f^2 = -Id$ si et seulement si n est pair.

Centrale a7-088

18. Trouver les matrices A, carrées d'ordre n, telles que A^2 ait une diagonale de 1 au-dessus de la diagonale principale et des 0 partout ailleurs. Mines a7-091