Ce sujet porte sur l'interpolation polynomiale d'une fonction.

Dans la première partie, on définit des polynômes d'interpolation.

Dans la deuxième partie, on étudie une fonction définie sur un segment.

- Dans tout le problème, on désigne par n un entier naturel, $n \geq 2$.
- Etant donnés deux entiers naturels $m \le n$, on note [|m,n|] l'ensemble des entiers naturels k tels que $m \le k \le n$.
- On note $\mathbb{R}_n[X]$ l'ensemble des polynômes à coefficients réels, de degré inférieur ou égal à n. On identifie polynômes et fonctions polynomiales.
- Etant donné un intervalle I de \mathbb{R} et un entier naturel p, on note $C^p(I,\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions p fois dérivables sur I à valeurs dans \mathbb{R} et dont la dérivée p-ième, notée $f^{(p)}$ est continue sur I. Le \mathbb{R} -espace vectoriel des fonctions continues de I dans \mathbb{R} est quant à lui noté $C(I,\mathbb{R})$. Lorsque I est le segment [a,b], on considère sur cet espace la norme N_{∞} définie par

$$\forall f \in C([a, b], \mathbb{R}), \ N_{\infty}(f) = \sup\{|f(x)|/\ x \in [a, b]\}\$$

• Pour $m, p \in \mathbb{N}$ avec $p \leq m$, on note $\binom{m}{p}$ l'entier $\frac{m!}{p!(m-p)!}$

Première partie.

Dans cette partie, on considère n+1 nombres réels, deux à deux distincts, notés x_0, x_1, \ldots, x_n et on définit la forme bilinéaire B sur $C(\mathbb{R}, \mathbb{R})$ par

$$\forall f, g \in C(\mathbb{R}, \mathbb{R}), \ B(f, g) = \sum_{i=0}^{n} f(x_i)g(x_i)$$

Pour $k \in [|0, n|]$, on définit $L_k \in \mathbb{R}_n[X]$ par $L_k(X) = \prod_{\substack{i=0 \ x_k - x_i \ i \neq k}}^n \frac{X - x_i}{x_k - x_i}$.

- I.1. Définition d'une structure euclidienne sur $\mathbb{R}_n[X]$.
 - **1.1.** Justifier rapidement l'affirmation : B définit un produit scalaire sur $\mathbb{R}_n[X]$ mais pas sur $C(\mathbb{R}, \mathbb{R})$.
 - **1.2.** Pour $j, k \in [|0, n|]$, calculer $L_k(x_j)$. Montrer que la famille $(L_k)_{0 \le k \le n}$ est une base orthonormale de l'espace euclidien $\mathbb{R}_n[X]$ pour le produit scalaire B.
- I.2. Définition de $P_n(f)$.

A toute fonction $f \in C(\mathbb{R}, \mathbb{R})$, on associe le polynôme $P_n(f)$ défini par

$$P_n(f) = \sum_{i=0}^{n} B(f, L_i) L_i$$

- **2.1.** Pour tout $k \in [|0, n|]$, exprimer $B(f, L_k)$ en fonction de $f(x_k)$. En déduire que $P_n(f)$ vérifie $P_n(f)(x_k) = f(x_k)$ pour tout $k \in [|0, n|]$.
- **2.2.** Montrer que $P_n(f)$ est l'unique polynôme $P \in \mathbb{R}_n[X]$ vérifiant $P(x_k) = f(x_k)$ pour tout $k \in [[0, n]]$.
- **2.3.** Expliciter $P_n(f)$ lorsque $f \in \mathbb{R}_n[X]$. Préciser le polynôme $\sum_{k=0}^n L_k(X)$ et, pour x réel, la valeur de la somme $\sum_{k=0}^n L_k(x)$.

Pour $f \in C(\mathbb{R}, \mathbb{R})$, on dira que $P_n(f)$ est le polynôme d'interpolation, de degré inférieur ou égal à n, de la fonction f aux points x_i , pour $i \in [|0, n|]$. Lorsqu'aucune confusion n'est possible, on notera simplement P_n au lieu de $P_n(f)$.

Dans la suite de cette partie, on considère un segment [a, b] contenant les points x_i , pour $i \in [0, n]$.

I.3. Un résultat auxiliaire.

Soit p un entier naturel non nul et soit $g \in C^p(\mathbb{R}, \mathbb{R})$ une fonction s'annulant en p+1 points distincts $c_0 < c_1 < \cdots < c_p$ de l'intervalle [a, b].

- **3.1.** Montrer que g' s'annule en au moins p points de [a,b].
- **3.2.** En déduire qu'il existe un point $\alpha \in [a, b]$ tel que $g^{(p)}(\alpha) = 0$.

I.4. Une expression de $f - P_n$.

On note T_{n+1} le polynôme de $\mathbb{R}_{n+1}[X]$ défini pour x réel par $T_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$. Soit f une fonction appartenant à $C^{n+1}([a,b],\mathbb{R})$ et soit g un réel de [a,b], distinct de tous les g, pour g i $\in [[0,n]]$. On note g (resp. g in g pour g i explicit polynôme d'interpolation de g de degré inférieur ou égal à g (resp. g in g pour g pour g pour g in g pour g pour

4.1. Montrer qu'il existe un réel r tel que pour tout réel x,

$$P_{n+1}(x) - P_n(x) = rT_{n+1}(x)$$

4.2. En appliquant à la fonction $g = f - P_{n+1}$ un résultat obtenu en I.4, montrer qu'il existe un réel $\beta \in [a,b]$ tel que $f^{(n+1)}(\beta) = r(n+1)!$.

En déduire que pour tout $y \in [a, b]$, il existe $\beta \in [a, b]$ tel que

$$f(y) - P_n(y) = \frac{1}{(n+1)!} T_{n+1}(y) f^{(n+1)}(\beta)$$
(1)

4.3. Montrer que l'égalité (1) est aussi vérifiée lorsque l'on remplace y par l'un des x_i pour $i \in [|0, n|]$.

Seconde partie.

Soit $n \geq 2$ un entier naturel. On considère la fonction φ définie sur le segment [0,n] par $\phi(t) = |t(t-1)\dots(t-n)|$.

II.1. Etude du maximum de φ .

- **1.1.** Montrer que φ admet un maximum sur l'intervalle [0, n].
- **1.2.** Soit $t \in [0, n]$; comparer $\varphi(n t)$ et $\varphi(t)$.
- **1.3.** On suppose t > 1 et $t \notin \mathbb{N}$. Calculer $\frac{\varphi(t-1)}{\varphi(t)}$.

En déduire que pour $t \in \left[1, \frac{n}{2}\right]$, on a $\varphi(t-1) \geq \varphi(t)$.

1.4. On suppose n pair et on note n=2p. Montrer que φ atteint son maximum en un point de l'intervalle [0,1] en supposant d'abord que p=1 puis $p\geq 2$.

On admettra que pour n impair, φ atteint son maximum en un point de [0,1].

II.2. Abscisse du maximum de φ .

- **2.1.** Soit $t \notin \mathbb{N}$; expliciter $\ln(\varphi(t))$. En déduire $\frac{\varphi'(t)}{\varphi(t)}$ en fonction de $\sum_{k=1}^{n} \frac{1}{t-k}$.
- **2.2.** Pour $t \in \left[\frac{1}{2}, 1\right[$, déterminer le signe de la somme $\sum_{k=2}^{n} \frac{1}{t-k}$. En déduire que $\varphi'(t)$ est strictement négatif sur l'intervalle $\left[\frac{1}{2}, 1\right[$.
- **2.3.** Calculer la dérivée de la fonction définie sur]0,1[par $g(t)=\sum_{k=0}^{n}\frac{1}{t-k}.$ Déterminer le sens de variation de g. En déduire que φ' s'annule en au plus un point de]0,1[.
- **2.4.** Montrer que le mximum de φ est atteint en un unique point de $]0, \frac{1}{2}[$, noté t_n . Quelle est la valeur de $\sum_{k=0}^{n} \frac{1}{t_n k}$?

II.3. Etude de l'abscisse t_n du maximum de φ .

- **3.1.** On suppose $k \in \mathbb{N}^*$, justifier l'inégalité $\frac{1}{k-t_n} > \frac{1}{k}$. En déduire une minoration de $\frac{1}{t_n}$.
- **3.2.** Préciser la nature de la série $\sum (1/k)_{k\geq 1}$. En déduire la limite de $\frac{1}{t_n}$ et par suite celle de t_n lorsque $n\to +\infty$.

- II.4. Une majoration de φ .
 4.1. Montrer l'inégalité $\int_1^{n+1} \frac{dt}{t} < \sum_{k=1}^n \frac{1}{k}$.
 4.2. Montrer l'inégalité $t_n < \frac{1}{\ln(n+1)}$.

 - **4.3.** En déduire que pour tout $t \in [0, n]$, on a $\varphi(t) < \frac{n!}{\ln(n+1)}$.

II.5. Une majoration de $N_{\infty}(f-P_n)$.

Dans cette question, on reprend les notatations de la partie I.

Soit [a,b] un segment. On note $h=\frac{b-a}{n}$ et on considère les n+1 points équidistants $x_i=a+ih$ de [a, b] pour $i \in [|0, n|]$.

- **5.1.** Pour $x \in [a, b]$, on note $t = \frac{x-a}{h} \in [0, n]$. On note T_{n+1} le polynôme défini en I.5 par $T_{n+1}(x) = \prod_{i=0}^{n} (x x_i)$. Exprimer $|T_{n+1}(x)|$ en fonction de h et de $\varphi(t)$. **5.2.** Soit $f \in C^{n+1}([a, b], \mathbb{R})$ et soit P_n son polynôme d'interpolation, de degré inférieur ou égal
- à n, aux points équidistants x_i pour $i \in [0, n]$, défini en I.2. Montrer l'inégalité

$$N_{\infty}(f - P_n) \le \frac{h^{n+1}}{(n+1)\ln(n+1)} N_{\infty}(f^{(n+1)})$$
(2)