IC du 21/03/2011:

Géométrie.

Programme de colle 22

Calcul différentiel

On étudie dans ce chapitre des applications d'un ouvert de E dans F où E et F sont des \mathbb{R} -espaces normés de dimensions p, n.

- Fonctions partielles : dérivation, fonction de classe C^1 ; les fonctions polynômiales sont C^1 sur E; opérations sur les fonctions C^1 ; dérivée suivant un vecteur quelconque.
- **Différentielle Jacobienne** en un point pour une fonction de classe \mathcal{C}^1 (une fonction de classe \mathcal{C}^1 admet un DL d'ordre 1.); dérivées partielles d'une fonction composée; \mathcal{C}^1 -difféomorphisme (Si f est injective et U est un ouvert de E, alors f induit un \mathcal{C}^1 -difféomorphisme $U \to f(U)$ ssi $f \in \mathcal{C}^1(U)$ et $\mathrm{d} f_a$ est inversible pour tout $a \in U$).
 - Résolution d'une EDP en utilisant un changement de variable donné.
- **Point critique**; c'est une condition nécessaire pour qu'une fonction C^1 ait extremum local en un point d'un ouvert.
- Fonction de classe C^k ; thm de Schwarz.

Courbes-Surfaces

- Coniques : trouver une équation réduite. Décrire.
- Quadriques : trouver une équation réduite. Décrire.
- Cylindre, surface de révolution, cône : Reconnaître, trouver une équation.

Géométrie différentielle

- Arcs paramétrés : Etude globale, locale, métrique (exclusivement dans le plan : \overrightarrow{T} , \overrightarrow{N} , $\gamma = \frac{\mathrm{d}\alpha}{\mathrm{d}s}$).
 - "Forme géométrique du théorème des fonctions implicites à 2 variables".
- Surface paramétrée Tout point est l'intersection de 2 courbes coordonnées. Plan tangent en un point régulier.
 - "Forme géométrique du théorème des fonctions implicites à 3 variables".
 - Courbe sur une surface. Contour apparent conique ou cylindrique.