CONCOURS CENTRALE SUPÉLEC

Mathématiques 2

Oral

PC

L'espace \mathbb{R}^2 est muni de sa structure affine canonique.

Soit le triangle ABC avec B et C des points sur l'axe des abscisses. Pour M un point de l'axe des abscisses, on note

- $-P_M$ le projeté orthogonal de M sur (AC);
- $-Q_M$ le projeté orthogonal de P_M sur (AB);
- $-R_M$ le projeté orthogonal de Q_M sur (BC).

On considère l'application $\varphi: \mathbb{R} \to \mathbb{R}$ qui à l'abscisse de M associe l'abscisse de R_M .

On cherche à résoudre $\varphi(x) = x$ avec $x \in \mathbb{R}$.

- 1. Étant donné trois points I, J et M avec $I \neq J$, déterminer le système vérifié par les coordonnées du projeté de M sur la droite (IJ).
- 2. Écrire une procédure **proj** qui, pour les points I, J et M donnés avec $I \neq J$, retourne le projeté orthogonal de M sur la droite (IJ).
- 3. En utilisant la procédure proj, écrire une procédure qui, pour un réel x donné, retourne l'abscisse du point R_M avec M(x,0).

On choisit les points B(0,0), C(3,0) et A(1,2). Pour x réel, on définit la suite de points $M_n(x_n,0)$ du plan par

$$x_0 = x$$
 et $\forall n \in \mathbb{N}, \ x_{n+1} = \varphi(x_n)$

- 4. Étant donnés un réel x et un entier N, programmer la représentation graphique des N+1 premiers termes de la suite (x_n) . Tester pour x=2,9 et N=100. Qu'observe-t-on?
- 5. Pour M et M' des points distincts de (BC) avec $M \neq C$, justifier l'égalité

$$\frac{P_M P_{M'}}{MM'} = \frac{P_M C}{MC} = |\cos c|$$

où c est la mesure de l'angle \widehat{BCA} .

6. En déduire qu'il existe $k \in [0,1]$ tel que

$$\forall (x,y) \in \mathbb{R}^2, \ |\varphi(x) - \varphi(y)| \leq k|x - y|$$

- 7. En admettant la convergence de la suite (x_n) , déterminer une solution approchée de l'équation $\varphi(x) = x$.
- 8. Pour tout $n \in \mathbb{N}$, on note $u_n = x_{n+1} x_n$. Montrer que

$$\forall n \in \mathbb{N}, |u_n| \leqslant k^n |u_1 - u_0|$$

En déduire la convergence de $\sum u_n$.

9. Conclure.