Soit q une fonction strictement négative sur \mathbb{R}_+ .

Soit y_1 la solution de y'' + qy = 0 telle que $y_1(0) = y'_1(0) = 1$.

Tracer avec Maple le graphe de y_1 sur [0,6] pour plusieurs valeurs de q.

Que peut-on conjecturer sur le signe, les variations et la convexité de y_1 ?

Montrer que y_1 , est strictement positive, strictement croissante et strictement convexe sur \mathbb{R}_+ . Montrer que $\frac{1}{y_1^2}$ est intégrable sur \mathbb{R}_+ et que $y_2(x) = y_1(x) \int_x^{+\infty} \frac{\mathrm{d}t}{y_1^2(t)}$ est solution de l'équation différentielle. (y_1, y_2) est-elle une base de l'ensemble des solutions de l'équation?

Montrer que y_2 admet une limite finie en $+\infty$.

Quel est l'ensemble des solutions bornées sur $\mathbb{R}_+\,?$

On suppose que q est intégrable sur \mathbb{R}_+ ; montrer que $\lim_{x\to +\infty}y_2'(x)=0$. Centrale

O19-081