O15-C909 > restart: > ed:=diff(x(t),t,t)-t*x(t); / 2 \ |d | ed := |--- x(t)| - t x(t) | 2 | \dt / > dsolve(ed,x(t)); x(t) = _C1 AiryBi(t) + _C2 AiryAi(t) > sol1:=dsolve({ed,x(0)=1,D(x)(0)=0},x(t));sol2:=dsolve({ed,x(0)=0,D(x)(0)=1},x(t));# Cauchy-Lipschitz linéaire d'ordre 2 (1/6) sol1 := x(t) = GAMMA(2/3) AiryAi(1) 3 / (3 AiryAi(1) + sqrt(3) AiryBi(1)) AiryBi(t) / ( / 2 2 (1/6) 3 AiryAi(1) - AiryBi(1) ) - GAMMA(2/3) 3 / (3 AiryAi(1) + sqrt(3) AiryBi(1)) AiryBi(1) AiryAi(t) / ( / 2 2 3 AiryAi(1) - AiryBi(1) ) (sqrt(3) AiryAi(1) + AiryBi(1)) AiryBi(t) sol2 := x(t) = - ----------------------------------------- 2 2 3 AiryAi(1) - AiryBi(1) (sqrt(3) AiryAi(1) + AiryBi(1)) sqrt(3) AiryAi(t) + ------------------------------------------------- 2 2 3 AiryAi(1) - AiryBi(1) > courb1:=subs(sol1,x(t));courb2:=subs(sol2,x(t)); (1/6) courb1 := GAMMA(2/3) AiryAi(1) 3 / (3 AiryAi(1) + sqrt(3) AiryBi(1)) AiryBi(t) / ( / 2 2 (1/6) 3 AiryAi(1) - AiryBi(1) ) - GAMMA(2/3) 3 / (3 AiryAi(1) + sqrt(3) AiryBi(1)) AiryBi(1) AiryAi(t) / ( / 2 2 3 AiryAi(1) - AiryBi(1) ) (sqrt(3) AiryAi(1) + AiryBi(1)) AiryBi(t) courb2 := - ----------------------------------------- 2 2 3 AiryAi(1) - AiryBi(1) (sqrt(3) AiryAi(1) + AiryBi(1)) sqrt(3) AiryAi(t) + ------------------------------------------------- 2 2 3 AiryAi(1) - AiryBi(1) > plot([courb1,courb2],t=-8..2.5); > # Les solutions ayant un DSE forment un ev de dimension 2 (a_0 et a_1 sont quelconques, a_2=0) donc on a toutes les solutions > f:=t->int(cos(u*t-u^3/3),u=0..Pi)/Pi; Pi / | 3 | cos(u t - 1/3 u ) du | / 0 f := t -> -------------------------- Pi > plot(f(t),t=-8..2.5); > # f est solution (particulière) de y"+ty=1/Pi.sin(Pi.t-Pi^3/3) ; t->x_1(-t) et t->x_2(-t) sont deux solutions indépendantes de l'EDO homogène associée > # t->f(t)+x_1(-t)+x_2(-t) est donc la solution générale de y"+ty=1/Pi.sin(Pi.t-Pi^3/3)